Comparison of two commercial diets for the production of marketable *Litopenaeus vannamei* in super-intensive, biofloc-dominated, zero-exchange raceways

Vita Magalhães, André Braga, Timothy C. Morris, Tim Markey, and Tzachi M. Samocha

Texas A&M AgriLife Research Mariculture Lab at Flour Bluff, Corpus Christi, Texas

Aquaculture 2013 February 21-25, 2013, Nashville, Tennessee

United States Department of Agriculture National Institute of Food and Agriculture

Introduction

- Recent advances in super-intensive, limited-discharge, biofloc systems for the culture of *Litopenaeus vannamei*, suggest that these systems can be profitable when used to produce live or fresh (never frozen) shrimp for niche markets
- ➤ Researchers, supported in part by the United States Marine Shrimp Farming Program have been working to improve system efficiency and make this technology economically viable

Introduction

- These systems offer improved biosecurity with reduced risk of crop losses to viral diseases
- Furthermore, operating these systems with no water exchange minimizes the negative effluent impact on receiving waters

Objectives

- To study the performance of *Litopenaeus* vannamei juveniles fed two commercial diets under high density and no water exchange
- ➤ To study the changes in selected WQ indicators in RWs stocked with these shrimp
- ➤ To study the benefit of using the YSI 5500 DO monitoring system as a management tool for a super-intensive, zero-exchange shrimp production system

- ➤ Six 40 m³ EPDM-lined RWs (Firestone Specialty Products, Indianapolis, IN) filled with a mixture of seawater (22 m³), and biofloc-rich water (18 m³) used in an earlier nursery trial
- > Salinity was adjusted to 30 ppt
- ➤ RWs were stocked at 500/m³ with juveniles (2.66 g) from a cross between Taura Resistant and Fast-Growth genetic lines (Shrimp Improvement Systems, Islamorada, FL)

- ➤ Each RW had eighteen 5.1 cm airlifts, six 1 m long air diffusers (AeroTube, Colorite Division, Tekni-Plex, Austin, TX) and a center longitudinal partition over a 5.1 cm PVC pipe with spray nozzles fed by a Venturi injector operated by a 2 hp pump
- Raceways were operated with no water exchange
- ➤ Evaporation was weekly compensated by adding chlorinated municipal freshwater

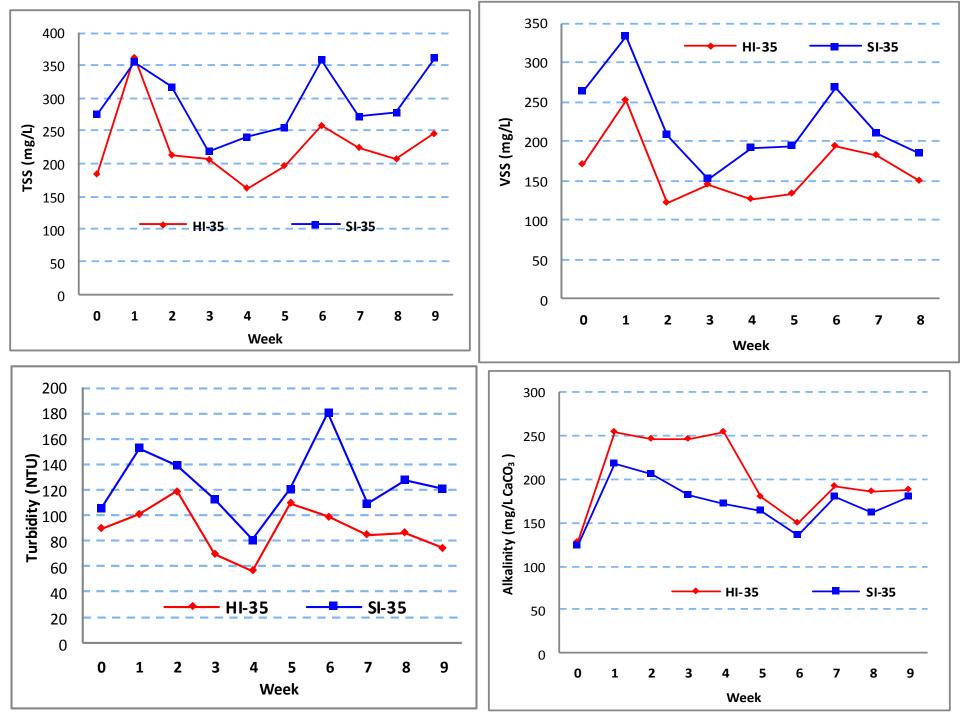
- Three RWs were fed HI-35 (\$1.75/kg) while three others received SI-35 (\$0.99/kg) feed (Zeigler Bros., Gardners, PA)
- ➤ Feed was distributed continuously 7 days a week using belt feeders
- ➤ Rations were initially determined using an assumed FCR of 1.4, growth of 1.5 g/wk, and mortality of 0.5%/wk, and were adjusted according to twice a week growth samples

- ➤ Each RW optical DO monitoring systems (YSI 5500, YSI Inc., Yellow Springs, OH) for continuous DO monitoring
- ➤ Water temperature, salinity, DO, and pH were monitored twice daily; ammonia-N, nitrite-N, nitrate-N, alkalinity, settleable solids, turbidity, TSS, VSS, and cBOD₅ were monitored once a week
- ➤ Alkalinity was adjusted to 150-200 mg/L (as CaCO₃) using sodium bicarbonate

- ➤ All RWs were outfitted each with a small commercial Foam Fractionator (VL 65 Aquatic Eco Systems, Apopka, FL) and a settling tank
- ➤ FFs & ST were used to control particulate matter and dissolved organics, originally targeting TSS and SS levels in the ranges of 200-300 mg/L and 10-14 mL/L, respectively

- ➤ The optical DO monitoring probe (YSI 5500, Yellow Springs Instruments, OH) of the monitoring system worked very well
- ➤ The use of this system enabled better scheduling of the feeding and minimized DO fluctuations
- ➤ TSS, turbidity and VSS levels remained significantly higher in the SI-35 treatment
- ➤ These results may be related to the higher levels of non-digestible components contained in the SI-35 than HI-35
- > Fiber: 2.69% vs. 1.61%
- > Ash: 11.11% vs. 9.55%

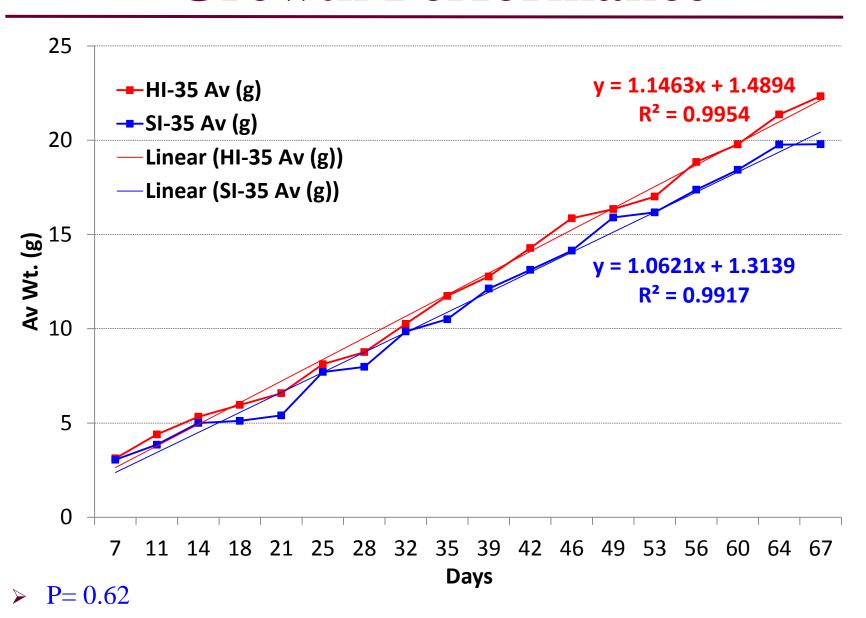
Daily WQ Data


		HI-35		SI-35	
		Mean	Min - Max	Mean	Min - Max
Temperature (C)	a.m.	29.6	27.5-30.7	29.5	28.1-30.5
	p.m.	30.5	28.2-31.6	30.3	28.8-31.5
DO (mg/L)	a.m.	5.9	4.6-7.0	5.9	4.6-7.6
	p.m.	5.5	4.7-6.6	5.5	4.5-7.0
рН	a.m.	7.1	6.6-7.5	7.1	6.7-7.5
	p.m.	7.1	6.2-7.6	7.1	6.3-7.5
Salinity (ppt)		28.3	24.4-36.5	28.3	24.6-36.7

- ➤ Ammonia and nitrite levels stayed low (< 0.5 and 1.22 mg/L, respectively) in all six raceways throughout the trial
- ➤ Nitrate increased from about 40 mg/L at the study initiation to a maximum of 359 mg/L at the end of the trial

Weekly Solids and Alkalinity Data

	HI-35		SI-35	
	Mean	Min-Max	Mean	Min-Max
ALK (mg/L)	208a	123-274	171 ^b	102-230
TSS (mg/L)	223a	115-552	278^{b}	155-460
VSS (mg/L)	161 ^a	92-435	205 ^b	117-288
SS (mL/L)	8	2-21	11	2.5-27
Turb. (NTU)	90 ^a	46-132	125 ^b	68-246


- ➤ Sodium bicarbonate was initially added to RWs equivalent to ~20% of the feed to target 160 mg/L CaCO₃
- The HI feed did not reduce the alkalinity at the same rate experienced with the SI-35 feed
- ➤ This quickly led to a separation in alkalinity between treatments due to the initial overcompensation in the HI-35 treatment
- ➤ By Week 5 the alkalinity levels in the two treatments were similar

	HI-35	SI-35
	Mean	Mean
Water use (L/kg shrimp)	124.7	138.3
Bicarbonate (kg)	41.6	53.6
Molasses (L)	10	10
Foam fractionator (h)	812	1,253
Settling tank (h)	87	391

Growth Performance

Performance of shrimp fed HI-35 & SI-35 diets in a high-density 67-d in biofloc dominated system

	HI-35	SI-35
Final Weight (g)	22.12 ± 11.35^{a}	19.74 ± 8.28^{b}
Growth (g/wk)	2.03 ± 0.01^{a}	1.76 ± 0.10^{b}
Total Biomass (kg)	389.8 ± 1.77^{a}	348.5 ± 9.21^{b}
Yield (kg/m ³)	9.74 ± 0.04^{a}	8.71 ± 0.22^{b}
FCR	1.25 ± 0.01^{a}	1.43 ± 0.04^{b}
Survival (%)	87.4 ± 0.52^{a}	88.3 ± 4.18^{a}

^{*} Although the cost difference between the HI & SI feeds is significant (\$1.75/kg vs. \$0.99/kg), a preliminary economic analysis indicates that both feeds would be commercially viable with the profit advantage in favor of the HI feed

Issues to address

- Operating year round
- Disease
- > PL Supply
- Marketing
- > Feed cost
- > FCR
- Growth
- Survival
- Energy & Temperature control
- > Zero exchange vs. Recirculating

Opportunities for the Future

- ➤ Improved technology continues to increase growth and production rates while reducing variable costs
- ➤ Continued genetic selection should favor higher yields over time
- ➤ Financial analyses are focusing research to sharpen competitiveness
- Marketing opportunities
 - > Consistent fresh never frozen product
 - ► Improved image as a domestic producer of healthy food in eco-friendly systems

Acknowledgements

- ➤ National Institute of Food & Agriculture (NIFA)

 USDA, AgriLife Research, The National Academy
 of Sciences USAID and CAPES, CNPq, FURG of
 Brazil for funding
- > Zeigler Bros. for the feed
- > Shrimp Improvement Systems for the PL
- > YSI for the DO monitoring systems
- > Aquatic Eco-Systems for the foam fractionators
- ➤ Colorite Plastics for the air diffusers
- ➤ Firestone Specialty Products for the EPDM liner

